Adapting Local Sequential Algorithms to the Distributed Setting
نویسندگان
چکیده
It is a well known fact that sequential algorithms which exhibit a strong ”local” nature can be adapted to the distributed setting given a legal graph coloring. The running time of the distributed algorithm will then be at least the number of colors. Surprisingly, this well known idea was never formally stated as a unified framework. In this paper we aim to define a robust family of local sequential algorithms which can be easily adapted to the distributed setting. We then develop new tools to further enhance these algorithms, achieving state of the art results for fundamental problems. We define a simple class of greedy-like algorithms which we call orderless-local algorithms. We show that given a legal c-coloring of the graph, every algorithm in this family can be converted into a distributed algorithm running in O(c) communication rounds in the CONGEST model. We show that this family is indeed robust as both the method of conditional expectations and the unconstrained submodular maximization algorithm of Buchbinder et al. [BFNS15] can be expressed as orderless-local algorithms for local utility functions — Utility functions which have a strong local nature to them. We use the above algorithms as a base for new distributed approximation algorithms for the weighted variants of some fundamental problems: Max k-Cut, Max-DiCut, Max 2-SAT and correlation clustering. We develop algorithms which have the same approximation guarantees as their sequential counterparts, up to a constant additive ǫ factor, while achieving an O(log∗ n) running time for deterministic algorithms and O(ǫ) running time for randomized ones. This improves exponentially upon the currently best known algorithms. ∗National Institute of Informatics, Tokyo, Japan. {k keniti, greg}@nii.ac.jp This work was supported by JST ERATO Grant Number JPMJER1201, Japan.
منابع مشابه
Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملA Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملForest resampling for distributed sequential Monte Carlo
This paper brings explicit considerations of distributed computing architectures and data structures into the rigorous design of Sequential Monte Carlo (SMC) methods. A theoretical result established recently by the authors shows that adapting interaction between particles to suitably control the Effective Sample Size (ESS) is sufficient to guarantee stability of SMC algorithms. Our objective i...
متن کاملA Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms
In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...
متن کاملDALD:-Distributed-Asynchronous-Local-Decontamination Algorithm in Arbitrary Graphs
Network environments always can be invaded by intruder agents. In networks where nodes are performing some computations, intruder agents might contaminate some nodes. Therefore, problem of decontaminating a network infected by intruder agents is one of the major problems in these networks. In this paper, we present a distributed asynchronous local algorithm for decontaminating a network. In mos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017